人人书

深度营养:为什么人类的基因需要传统饮食全文阅读

外国小说文学理论侦探推理惊悚悬疑传记回忆杂文随笔诗歌戏曲小故事
人人书 > 科普学习 > 深度营养:为什么人类的基因需要传统饮食

细胞核:食物操控基因的地方

书籍名:《深度营养:为什么人类的基因需要传统饮食》    作者:凯瑟琳.沙纳汉
推荐阅读:深度营养:为什么人类的基因需要传统饮食txt下载 深度营养:为什么人类的基因需要传统饮食笔趣阁 深度营养:为什么人类的基因需要传统饮食顶点 深度营养:为什么人类的基因需要传统饮食快眼 深度营养:为什么人类的基因需要传统饮食sodu
上一章目录下一章
    《深度营养:为什么人类的基因需要传统饮食》细胞核:食物操控基因的地方,页面无弹窗的全文阅读!


每个人体细胞中都有一个特殊的“小房间”,叫作细胞核,它为DNA提供场所、实施保护。细胞核内部的DNA被分成叫作染色体的物质组块。尽管每条染色体的双螺旋结构拉伸后有几英尺 [1] 长,但46条染色体压缩在一起却只占用几微米的空间,紧紧缠绕在叫作组蛋白的微小结构上。如果这些缠绕的线状基因信息发生松动,就能使一段DNA与酶结合,从而“开启”(激活)基因或基因组的表达。

食物中诸如维生素和矿物质这样的营养物质及人体自己制造的激素与蛋白质,在调节这种缠绕和松动的过程中扮演着不同的角色,叫作“呼吸”。我们了解得越多,就越能理解基因也有自己的生命。表观遗传学领域才刚刚触及这一动态基因调控系统的表层,但我们可以肯定的是,染色体数据计算以模拟的方式进行,而非数字方式,因此DNA能够储存和计算的信息量远远超出人们之前的想象。



染色体的学习过程


让我们对染色体进行近距离的观察,以便全面了解“基因大脑”的工作机理,以及为什么它有时可能会忘记如何发挥正常功能。

人有46条染色体,每一条都是很长的DNA分子,包含3亿个碱基对,碱基只有4种,分别用A、G、T和C表示。我们所有的基因数据都以4种字母的不同模式加密。如果改变一个字母,就会改变加密模式,其意义会随之改变,有机体的生长也很有可能发生变化。

长期以来,生物学家一直认为碱基字母替换是产生这种生理变化的唯一途径。而表观遗传学告诉我们,不同个体的不同生理特征并非来自永久的碱基字母替换,而是源于一些临时标记——表观遗传标记。它们依附在DNA的双螺旋结构或其他核质上,能够改变基因的表达方式。有些标记在人们出生时就有了,但随着年龄的增长,一些标记被删除了,其余的标记则累积下来。研究人员需要弄清楚这些标记的具体意义。这到底是DNA衰老的必然结果,还是出于其他原因?后者听起来更振奋人心!如果每个人一生当中产生的标记相同,这就是简单的衰老过程;但如果出现标记差异,则说明不同的人生经历可能会产生不同的基因运行模式,在某种程度上,这也意味着我们的基因具有学习能力。

2005年,西班牙科学家找到了解决这一谜题的办法。他们提取了两对同卵双胞胎的染色体,一对双胞胎3岁,另一对50岁。他们分别把荧光绿和荧光红的分子捆绑在经过表观遗传改良和未改良的DNA片段上,并对两组基因进行了研究。两个孩子的基因看起来非常相似,这表明和大家想的一样,双胞胎在生命之初拥有几乎相同的基因标记。相比之下,50岁双胞胎的染色体就像两棵装饰风格截然不同的圣诞树,一棵闪着绿光,一棵闪着红光。他们的生活经历标记了他们的基因,表明这对同卵双胞胎的基因功能不再相同。这意味着基因标记不仅源于衰老,也是我们生活方式的直接结果。其他类似的研究已经证实表观遗传标记是身体对化学物质做出的反应,这些化学物质源自我们通过嘴巴摄入的食物、通过鼻子呼吸的空气、大脑所做的思考以及身体所做的动作。所以,我们能够得出结论:基因似乎总在倾听,随时准备做出反应或改变。通过观察这对50岁双胞胎姐妹染色体红绿模式的不同,科学家捕捉到了不同基因形成的不同“个性”。

这些存在差异的基因标记有助于解释为什么DNA完全相同的双胞胎可能患上完全不同的疾病。如果双胞胎中有一个吸烟、喝酒、喜食垃圾食品,另一个则注意养生,两个人的DNA就会接受迥异的“化学教育”——后者接受的是系统、平衡的教育,而前者的学习环境如同脏乱的街道,充斥着各种化学物质造成的喧嚣。

从这个角度讲,生活方式影响着基因的行为表现。通过选择健康或不健康的膳食和生活习惯,我们可以训练自己的基因,使其表现良好或糟糕。在环境的影响下,两套完全相同的DNA产生了截然不同的基因表达。凭借这一事实,科学家确认了很多基因标记手段,包括“书签”、印记、基因沉寂、X染色体失活、位置效应、重编程、基因转应作用、母体效应、组蛋白修饰、副突变等。在这些表观基因调节的过程中,许多都涉及标记DNA片段,这决定了基因开启的频率。如果开启,基因就能接受将其转化为蛋白质的酶;如果无法开启,基因就会一直处于休眠状态,相应的蛋白质也不能被正常表达。

假设双胞胎姐妹中有一个常喝牛奶并搬至夏威夷(在那里她的皮肤可以通过晒太阳合成维生素D);而另一个不喝牛奶,居住在明尼苏达州。可以预见的是,后者相较前者更容易出现骨质疏松的问题,而且更容易发生髋关节或脊柱骨折等与骨质疏松相关的意外。表观遗传的双胞胎研究说明,被研究对象不仅X光片不同,基因也存在差异。科学家正在逐步让公众相信,忽略对自己身体的护理与滋养,不仅影响健康,还会影响基因,可能对子孙后代产生不利的影响。研究表明,兄弟姐妹中如果有人患有骨质疏松症,而其他人无此问题,原因就在于这个人体内负责骨骼生长的基因处于睡眠状态,被暂时打上了隐蔽和休眠的标记。庆幸的是,如果我们改变生活习惯,它们就能苏醒过来。

我们再看一下双胞胎姐妹中吸烟又喝酒的那位,她的状况不容乐观。她也许已经对自己的骨质造成了不可估量的损害,无论如何也无法和她那位喝牛奶、体内维生素D充足的姐妹相比。更糟糕的是,她怀孕前形成的所有表观遗传标记都有可能遗传给她的孩子,所以她对那些可以强健骨骼的营养物质的忽略就会导致她的孩子遗传到的骨骼生长基因不够活跃,从表观遗传的角度讲,这个孩子更容易患上骨质疏松症。英国伦敦儿童健康研究所的临床遗传学教授马库斯·彭布里(Marcus Pembry)认为:“我们都是基因组的守护者。人们的生活方式不仅影响其自身,还有可能对其子孙后代的基因产生毁灭性影响。”

最令我着迷的是这个体系的智慧。我们的基因似乎找到了某种“记笔记”的方式,提醒它们依据得到的各种养分采取相应的行动。让我们看看这个过程吧!假设生成骨骼的基因带有两个表观遗传标记,一个与维生素D结合,另一个与钙结合。如果维生素D与钙同时与各自对应的表观遗传标记结合,那么基因开启并得以表达。如果既没有维生素D,也没有钙,基因则会继续休眠,生成的骨质较少。表观遗传调节标签有效地起到了便利贴的作用:如果周围的维生素D和钙很充足,就会立即制造出大量骨骼生成所需的蛋白质!它们一旦动工,看吧,你的骨骼就会更壮、更长。这是多么巧妙的设计啊!



当然,DNA并不知道某个基因能做什么,它甚至不清楚它接触的各种养分有什么好处。通过尚未搞清楚的某种机制,DNA在过去的某个时刻经过了表观基因标记的编程处理,表观基因标记会根据某种营养的充足或缺乏情况,开启或关闭某些DNA。整个编程体系是可变的,这些标记也显然可以删除,让基因大脑忘记(至少暂时忘记)之前的编程信息。

上一章目录下一章
推荐书籍:获客 叛逆天才:拒绝一颗盲从的心,让自己闪闪发光 女配手握龙傲天剧本 女主她超可爱 女尊之夫郎是只鬼 女尊之科举宠夫两不误 判官大人请自重 炮灰男配沉迷赚钱之后 炮灰女配绑定万人迷系统后 炮灰女配苟成了女主